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Contributions
• The first algorithm for learning adversarial low-rank MDPs, called Policy Optimization for

LOw-rank MDPs (POLO), that simultaneously tackles the representation learning and adver-
sarially changed loss functions in RL.

• Attains the Õ(K
5/6A

1/2d ln(1 + M)/(1− γ)2) regret upper bound.

• An Ω( γ2

1−γ
√
dAK) regret lower bound is also provided, serving as the first regret lower bound

for learning low-rank MDPs in the regret minimization setting.

Setting
Episodic Infinite-horizon Adversarial MDPs (S,A, P ?, {`k}Kk=1, γ, d0)

• S and A: state and action spaces

• P ? : S ×A× S → [0, 1]: transition probability kernel

• γ ∈ [0, 1): discount factor

• d0 ∈ ∆(S): initial distribution over state space

• `k : S ×A → [0, 1]: loss function in episode k

Low-rank MDPs An MDP is a low-rank MDP if there exist two feature embedding func-
tions φ? : S × A → Rd, µ? : S → Rd such that for any (s, a, s′) ∈ S × A × S ,
P ?
(
s′ | s, a

)
= µ?

(
s′
)>

φ?(s, a), where ‖φ?(s, a)‖2 ≤ 1 and for any function g : S →
[0, 1],

∥∥∫ µ?(s)g(s)d(s)
∥∥

2 ≤
√
d.

Learning Objective Minimize the pseudo regret with respect to π?, defined as RK =

E
[∑K
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V πkk − V

π?
k

)]
, where π? ∈ argminπ∈ΠE

[∑K
k=1 V

π
k

]
is the fixed optimal policy in

hindsight and Π is the set of all stochastic policies.

Algorithm
Doubled Exploration and Exploitation
• One-step trick to guarantee the (near) optimism of the estimated value functions at d0 in [3]:

E(s,a)∼dπ̃P?
[g(s, a)] ≤ (1− γ)−1E(s,a)∼dπ̃P?

[
‖φ?(s, a)‖Σ−1ρk,φ?

]√
kγAEρ′k

[
g2(s, a)

]
+ γλkdB

2 ,

where ρk(s, a) = 1/k
∑k
i=1 d

π̃i
P ?(s, a) and ρ′k(s, a) = 1/k

∑k
i=1 d

π̃i
P ?(s)U(a).

• Two-step exploration by sampling actions from U(·) after collecting sk ∼ dπ̃kP ?.

• Previous algorithms (e.g., algorithm in [3]) have no regret guarantees due to the uniform explo-
ration, even in the stochastic setting.

• Instead, our POLO uses a mixed roll-out policy to interleave (a) the exploration over transitions
required by representation learning; and (b) the exploration and exploitation over the adversar-
ial loss functions by policy optimization.

• Formally, conducts the exploration over the transitions with probability ξ and execute policy π̃k
optimized by online mirror descent (OMD) with probability 1− ξ, respectively.

Empirical Model Update
• Performing maximum likelihood estimation (MLE) over the updated datasets to obtain the

empirical transition P̂k by solving
(
µ̂k, φ̂k

)
= argmax

(µ,φ)∈M
EDk∪D′k

[
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.

Policy Optimization in Fixed Learned Models
• Previous OMD-based PO methods for tabular and linear (mixture) MDPs [2, 1] critically

depend on the point-wise optimism for each state-action pair, i.e., Q̂π̃kk (s, a) ≤ `k(s, a) +

γ[P ?V̂ π̃kk ](s, a), to enable the decomposition (cf., Lemma 1 by [2])

V̂ π̃kk (s0)− V π
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where Q̂π̃kk is the Q value function of π̃k on (P̂k, `k − b̂k) with b̂k as some bonus function.
• The first term is contributed by competing with π? in the true model P ? =⇒ conducting policy

optimization in the true model.
• Unfortunately, not applicable in low-rank MDPs, due to the unknown representations.
• Instead, we consider the following decomposition:

V̂ π̃kk (s0)− V π
?

k (s0)

=V̂ π̃kk (s0)− V̂ π
?
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• The first term is contributed by competing against π? in the learned model P̂k =⇒ conducting
policy optimization in learned models.

• This decomposition will be amenable as long as we can achieve a near optimism at the initial
state s0, i.e., V̂ π

?

k (s0)− V π?k (s0) . 0

• Caveat: the local update nature of PO at each state + state occupancy distribution dπ
?

P̂k
varies

across different episodes =⇒ the first term above is no longer bounded by OMD analysis!
• To address this issue, POLO adopts an epoch-based transition update, in which one epoch has
L episodes and the model is only updated at the first episode in one epoch.

• With DF (x, y) as the KL divergence, at the end of episode k, the policy is updated by solving

π̃k+1(· | s) ∈ argminπ(·|s)∈∆(A)η
〈
π(· | s), Q̂π̃kk (s, ·)

〉
+ DF (π(· | s), π̃k(· | s)) .

Analysis
Regret Upper Bound
Theorem 1. For any adversarial low-rank MDP, with appropriate setting of parameters, the regret
of POLO is upper bounded byRK = O(K

5/6A
1/2d ln

(
1 + AMK2

)
/ (1− γ)2).

Remark. Ignoring the dependence on all logarithmic factors but M , the regret upper bound can
be simplified as Õ(K

5/6A
1/2d ln(1 + M)/(1 − γ)2). The regret upper bound matches the regret

lower bound Ω( γ2

1−γ
√
dAK) in A up to a logarithmic factor but looses in factors of K and d.

Regret Lower Bound
Theorem 2. Suppose d ≥ 8, S ≥ d + 1, A ≥ d− 3, and K ≥ 2(d− 4)A. Then for any algorithm
Alg, there exists an episodic infinite-horizon low-rank MDPMAlg with fixed loss function such

that the regret for this MDP is lower bounded by Ω( γ2

1−γ
√
dAK).

Remark. • The first regret lower bound for learning low-rank MDPs with fixed loss functions.
• The dependence on A in Theorem 2 shows a clear separation between low-rank MDPs and

linear MDPs, which demonstrates that low-rank MDPs are statistically more difficult to learn
than linear MDPs in the regret minimization setting.

Figure 1: The class of the hard-to-learn low-rank MDP instances used in the proof of Theorem 2.
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