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Contributions

e The first algorithm for learning adversarial low-rank MDPs, called Policy Optimization for
LOw-rank MDPs (POLO), that simultaneously tackles the representation learning and adver-
sarially changed loss functions in RL.

e Attains the O(K”/5A"2dIn(1 + M)/(1 — ~)?) regret upper bound.

2
* An Q( =V dAK) regret lower bound is also provided, serving as the first regret lower bound
for learning low-rank MDPs 1n the regret minimization setting.

Setting

Episodic Infinite-horizon Adversarial MDPs (S, A, P*, {¢; }* | v, dy)
e S and A: state and action spaces
e P*: § x A xS — [0, 1]: transition probability kernel
e~y € [0, 1): discount factor
* dy € A(S): initial distribution over state space
/1. S x A —|0,1]: loss function in episode k

Low-rank MDPs An MDP is a low-rank MDP 1if there exist two feature embedding func-
tions ¢* : S x A — R p* © S — R? such that for any (s,a,s’) € S x A x S,

P*(s'|s,a) = p* (s’)Tgb*(s,a), where ||¢*(s,a)|l, < 1 and for any function g : S —

s)l, < V.

Learning Objective Minimize the pseudo regret with respect to 7*, defined as Ry =

K *
hindsight and 1 1s the set of all stochastic policies.

where 7% € argmin_E {Zle Vlﬂ 1s the fixed optimal policy in

Algorithm

Doubled Exploration and Exploitation

e One-step trick to guarantee the (near) optimism of the estimated value functions at d in [3]:

E(s)a)wd?*[g<87a>] < (1 o /Y>_1E<37a>wd7;* [Hgb (S a HZ 1 ] \/k/yAEpk [ (S,CL)} —F”}/)\]{CZBZ,

where py(s,a) = 1/k 31y dp.(s,a) and pl(s,a) = 1/k 37 dj.(s)U a).

» Two-step exploration by sampling actions from U(-) after collecting sj, ~ d .

 Previous algorithms (e.g., algorithm 1n [3]) have no regret guarantees due to the uniform explo-
ration, even 1n the stochastic setting.

e Instead, our POLO uses a mixed roll-out policy to interleave (a) the exploration over transitions
required by representation learning; and (b) the exploration and exploitation over the adversar-
1al loss functions by policy optimization.

e Formally, conducts the exploration over the transitions with probability £ and execute policy ;.
optimized by online mirror descent (OMD) with probability 1 — &, respectively.

Empirical Model Update

e Performing maximum likelihood estimation (MLE) over the updated datasets to obtain the

empirical transition ﬁk by solving (ﬁk, ggk) = argmax EDkUD’ {mu ( / ) o(s, a)}, where
(11,0)eM

Ep|f (s,a,8")| =1/|D] Z(s,a,s’)eDf (s,a,s).
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Algorithm 1 Policy Optimization for Low-rank MDPs (POLO)

1: Input: Mixing coefficient &, epoch length L, regularization coefficients {\; }:*_,, bonus coeffi-
cients {ay }5_ |, model class M, number of episodes K, learning rate 1,.

2: Initialization: Set Dy = (), D}, = 0.

3: fori =1,2,...,|K/L]| do

4: Setk; =(i— 1)L+ 1and 7y, (- | s) to be uniform for any s € §.

5: fork=k;ki+1,...,ki+L—1do
6: Sample s from d7.
7: Sample c;, ~ Ber(1 — £).
8: if ¢, = 1 then
9: Sample ay ~ 7g(- | sk), 8, ~ P*(- | sk,ar),a;, ~ 7k(- | 8%), 8¢ ~ P*(- | s,.,a}.).
10: else
11: Sample ar ~ U(A), s; ~ P*(- | sk, ar),a, ~ U(A), s ~ P*(- | s}.,a..).
12: end if
13: Observe the loss function 4.
14: Update datasets Dy, = Dx_1 U {(sg, ak, %)}, D = Di_; U{(sy,ar,s%)}-
15: if £ = k; then R R
16: Set the empirical transition Py (s’ | s,a) = fix(s') ' ¢x(s,a), ¥(s,a,s') € S x Ax S
via solving Eq. (1). R R
17: Update the empirical civariance matrix 3y, = Z(S#)Epk or(s,a)pr(s,a)’ + A1
18: Set the bonus function by (s, a) := min(ax|| ¢k (s, a) ||§k_1 ,2)/(1—7),V(s,a) e S x A
19: else R R L
20: Set the empirical transition P, = Pj, and bonus function by = by,.
21: end if R R
22: Compute Qkk( ) = PDIiE}’—E?&lU&tiDH(P&,Eh — b, k).
23 Update policy i (- | -) o k(- | ) exp(—nQg*(-,)).
24:  end for
25: end for

Policy Optimization in Fixed Learned Models

e Previous OMD-based PO methods for tabular and linear (mixture) MDPs [2, 1] critically
depend on the point-wise optimism for each state-action pair, i.e., Qk (s,a) < li(s,a) +

[P*Vkﬂ’f] (s,a), to enable the decomposition (cf., Lemma 1 by [2])
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where @Z’“ is the () value function of 7, on (Pk, U — /b\k) with Ek as some bonus function.

e The first term is contributed by competing with 7* in the frue model P* = conducting policy
optimization in the frue model.

e Unfortunately, not applicable in low-rank MDPs, due to the unknown representations.

e Instead, we consider the following decomposition:

~

Vit (s0) = Vi (s0)
:V/:]j@o) = Vi (s0) +V} (s0) =V} (s0)

0
:E Z’YT <’ﬁ'k( ‘ Skﬂ') o 7T*(' ’ Skﬂ')v ng(skﬂ'a >> 7T*7 Pka SO + V/gT (SO) o v/fﬂ <SO) ?
T=

e The first term is contributed by competing against 7™ in the learned model ﬁk — conducting
policy optimization in learned models.

e This decomposmon will be amenable as long as we can achieve a near optimism at the initial
state s, i.e., V” (s0) — VW (s0) <0

e Caveat: the local update nature of PO at each state + state occupancy distribution d}g varies
across different episodes = the first term above 1s no longer bounded by OMD analysis!

e To address this 1ssue, POLO adopts an epoch-based transition update, in which one epoch has
L episodes and the model is only updated at the first episode in one epoch.

* With D (x,y) as the KL divergence, at the end of episode k, the policy is updated by solving

(7(-19), Q¥ (s,)) + Dp(r(- | 8), 7 | )

Tr1(- | 8) € argming | ea(a)7

Analysis

Regret Upper Bound

Theorem 1. For any adversarial low-rank MDP, with appropriate setting of parameters, the regret
of POLO is upper bounded by Ry = O(K’/*A'2dn (1+ AMKQ) /(1 =7)%).

Remark. Ignoring the dependence on all logarithmic factors but M, the regret upper bound can
be simplified as O( K5A2dIn(1 + M) /(1 — v)2). The regret upper bound matches the regret

lower bound Q( Y% dAK) in A up to a logarithmic factor but looses in factors of K and d.

Regret Lower Bound

Theorem 2. Suppose d > 8, S >d+ 1, A>d— 3, and K > 2(d — 4)A. Then for any algorithm
Alg, there exists an episodic infinite-horizon low- mnk MDP My, with fixed loss function such

that the regret for this MDP is lower bounded by Q(1— \/ dAK).
Remark. ¢ The first regret lower bound for learning low rank MDPs with fixed loss functions.

e The dependence on A in Theorem 2 shows a clear separation between low-rank MDPs and
linear MDPs, which demonstrates that low-rank MDPs are statistically more difficult to learn
than linear MDPs in the regret minimization setting.
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Figure 1: The class of the hard-to-learn low-rank MDP instances used in the proof of Theorem 2.
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