Learning Adversarial Low-rank MDPs with Unknown Transition and Full-information Feedback Canzhe Zhao, Ruofeng Yang, Baoxiang Wang, Xuezhou Zhang, Shuai Li

Contributions

- The first algorithm for learning adversarial low-rank MDPs, called Polic LOw-rank MDPs (POLO), that simultaneously tackles the representation sarially changed loss functions in RL.
- Attains the $\widetilde{O}(K^{5/6}A^{1/2}d\ln(1+M)/(1-\gamma)^2)$ regret upper bound.
- An $\Omega(\frac{\gamma^2}{1-\gamma}\sqrt{dAK})$ regret lower bound is also provided, serving as the first regret lower bound for learning low-rank MDPs in the regret minimization setting.

Setting

Episodic Infinite-horizon Adversarial MDPs $(S, A, P^{\star}, \{\ell_k\}_{k=1}^K, \gamma, d_0)$

- S and A: state and action spaces
- $P^{\star}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0, 1]$: transition probability kernel
- $\gamma \in [0, 1)$: discount factor
- $d_0 \in \Delta(\mathcal{S})$: initial distribution over state space
- $\ell_k : \mathcal{S} \times \mathcal{A} \to [0, 1]$: loss function in episode k

Low-rank MDPs An MDP is a low-rank MDP if there exist two feature embedding functions ϕ^{\star} : $\mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$, μ^{\star} : $\mathcal{S} \to \mathbb{R}^d$ such that for any $(s, a, s') \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}$, $P^{\star}(s' \mid s, a) = \mu^{\star}(s')^{\top} \phi^{\star}(s, a), \text{ where } \|\phi^{\star}(s, a)\|_{2} \leq 1 \text{ and for any function } g : \mathcal{S} \rightarrow \mathcal{S}$ $[0,1], \left\| \int \mu^{\star}(s)g(s)d(s) \right\|_{2} \leq \sqrt{d}.$

Learning Objective Minimize the *pseudo regret* with respect to π^* , defined as $\mathcal{R}_K =$ $\mathbb{E}\left[\sum_{k=1}^{K} \left(V_k^{\pi_k} - V_k^{\pi^*}\right)\right]$, where $\pi^* \in \operatorname{argmin}_{\pi \in \Pi} \mathbb{E}\left[\sum_{k=1}^{K} V_k^{\pi}\right]$ is the fixed optimal policy in hindsight and Π is the set of all stochastic policies.

Algorithm

Doubled Exploration and Exploitation

• One-step trick to guarantee the (near) optimism of the estimated value functions at d_0 in [3]:

$$\mathbb{E}_{(s,a)\sim d_{P^{\star}}^{\tilde{\pi}}}[g(s,a)] \leq (1-\gamma)^{-1} \mathbb{E}_{(s,a)\sim d_{P^{\star}}^{\tilde{\pi}}} \left[\|\phi^{\star}(s,a)\|_{\Sigma_{\rho_{k},\phi^{\star}}^{-1}} \right] \sqrt{k\gamma A \mathbb{E}_{\rho_{k}'}\left[g^{2}(s,a)\right] + \gamma \lambda_{k} dB^{2}},$$

where $\rho_k(s, a) = 1/k \sum_{i=1}^k d_{P^*}^{\pi_i}(s, a)$ and $\rho'_k(s, a) = 1/k \sum_{i=1}^k d_{P^*}^{\pi_i}(s) U(a)$. • Two-step exploration by sampling actions from $U(\cdot)$ after collecting $s_k \sim d_{P^*}^{\pi_k}$.

- Previous algorithms (e.g., algorithm in [3]) have no regret guarantees due to the uniform exploration, even in the stochastic setting.
- Instead, our POLO uses a mixed roll-out policy to interleave (a) the exploration over transitions required by representation learning; and (b) the exploration and exploitation over the adversarial loss functions by policy optimization.
- Formally, conducts the exploration over the transitions with probability ξ and execute policy $\tilde{\pi}_k$ optimized by online mirror descent (OMD) with probability $1 - \xi$, respectively.

Empirical Model Update

• Performing maximum likelihood estimation (MLE) over the updated datasets to obtain the empirical transition \widehat{P}_k by solving $\left(\widehat{\mu}_k, \widehat{\phi}_k\right) = \underset{(\mu, \phi) \in \mathcal{M}}{\operatorname{argmax}} \mathbb{E}_{\mathcal{D}_k \cup \mathcal{D}'_k} \left[\ln \mu^\top (s') \phi(s, a)\right]$, where $\mathbb{E}_{\mathcal{D}} \left[f\left(s, a, s'\right) \right] = 1/|\mathcal{D}| \sum_{(s, a, s') \in \mathcal{D}} f\left(s, a, s'\right).$

上海交通大学 约翰・霍普克罗夫特 计算机科学中心

John Hopcroft Center for Computer Science

cy Optimization for	r
learning and adver	-

Algorithm 1 Policy Optimization for Low-rank MDPs (POLC	
1: Input: Mixing coefficient ξ , epoch length L, regularization	
cients $\{\alpha_k\}_{k=1}^K$, model class \mathcal{M} , number of episodes K, l	
2: Initialization: Set $\mathcal{D}_0 = \emptyset$, $\mathcal{D}'_0 = \emptyset$.	
3: for $i = 1, 2, \ldots, \lceil K/L \rceil$ do	
4: Set $k_i = (i-1)L + 1$ and $\tilde{\pi}_{k_i}(\cdot \mid s)$ to be uniform for a	
5: for $k = k_i, k_i + 1,, k_i + L - 1$ do	
6: Sample s_k from $d_{P^*}^{\pi_k}$.	
7: Sample $c_k \sim \operatorname{Ber}(1-\xi)$.	
8: if $c_k = 1$ then	
9: Sample $a_k \sim \tilde{\pi}_k(\cdot \mid s_k), s'_k \sim P^*(\cdot \mid s_k, a_k), a'_k \sim$	
10: else	
11: Sample $a_k \sim U(\mathcal{A}), s'_k \sim P^*(\cdot \mid s_k, a_k), a'_k \sim U(\mathcal{A})$	
12: end if	
13: Observe the loss function ℓ_k .	
14: Update datasets $D_k = D_{k-1} \cup \{(s_k, a_k, s_k)\}, D_k =$	
15: If $\kappa = \kappa_i$ then 16. $\widehat{D} (\lambda_i) = \widehat{D} (\lambda_i)$	
16: Set the empirical transition $P_k(s' \mid s, a) = \mu_k(s')$	
via solving Eq. (1).	
17: Update the empirical covariance matrix $\Sigma_k = \sum_{k=1}^{\infty} \sum_{$	
18: Set the bonus function $\widehat{b}_k(s, a) \coloneqq \min(\alpha_k \ \widehat{\phi}_k(s, a))$	
19: else	
20: Set the empirical transition $P_k = P_{k_i}$ and bonus fu	
21: end if \widehat{a}	
22: Compute $Q_k^{\pi_k}(\cdot, \cdot) = \text{Policy-Evaluation}(P_k, \ell_k - b)$	
23: Update policy $\tilde{\pi}_{k+1}(\cdot \mid \cdot) \propto \tilde{\pi}_k(\cdot \mid \cdot) \exp(-\eta \widehat{Q}_k^{\tilde{\pi}_k}(\cdot, \cdot \mid \cdot))$	
24: end for	
25: end for	

Policy Optimization in Fixed Learned Models

• Previous OMD-based PO methods for tabular and linear (mixture) MDPs [2, 1] critically depend on the *point-wise optimism* for each state-action pair, *i.e.*, $\widehat{Q}_k^{\pi_k}(s,a) \leq \ell_k(s,a) + \ell_k(s,a)$ $\gamma[P^{\star} \widehat{V}_{k}^{\pi_{k}}](s, a)$, to enable the decomposition (cf., Lemma 1 by [2])

$$\begin{aligned} \widehat{V}_{k}^{\tilde{\pi}_{k}}(s_{0}) - V_{k}^{\pi^{\star}}(s_{0}) &= \mathbb{E}\left[\sum_{\tau=0}^{\infty} \gamma^{\tau} \left\langle \tilde{\pi}_{k}(\cdot \mid s_{\tau}) - \pi^{\star}(\cdot \mid s_{\tau}), \widehat{Q}_{k}^{\tilde{\pi}_{k}}(s_{\tau}, \cdot) \right\rangle \middle| \pi^{\star}, P^{\star}, s_{0} \right] \\ &+ \mathbb{E}\left[\sum_{\tau=0}^{\infty} \gamma^{\tau} \left(\widehat{Q}_{k}^{\tilde{\pi}_{k}}(s_{\tau}, a_{\tau}) - \ell_{k}(s_{\tau}, a_{\tau}) - \gamma \left[P^{\star} \widehat{V}_{k}^{\tilde{\pi}_{k}} \right](s_{\tau}, a_{\tau}) \right) \middle| \pi^{\star}, P^{\star}, s_{0} \right] ,\end{aligned}$$

where $\widehat{Q}_{k}^{\widetilde{\pi}_{k}}$ is the Q value function of $\widetilde{\pi}_{k}$ on $(\widehat{P}_{k}, \ell_{k} - \widehat{b}_{k})$ with \widehat{b}_{k} as some bonus function. • The first term is contributed by competing with π^* in the *true* model $P^* \Longrightarrow$ conducting policy

- optimization in the true model.
- Unfortunately, not applicable in low-rank MDPs, due to the unknown representations.
- Instead, we consider the following decomposition:

$$\begin{aligned} &\widehat{V}_{k}^{\tilde{\pi}_{k}}(s_{0}) - V_{k}^{\pi^{\star}}(s_{0}) \\ &= \widehat{V}_{k}^{\tilde{\pi}_{k}}(s_{0}) - \widehat{V}_{k}^{\pi^{\star}}(s_{0}) + \widehat{V}_{k}^{\pi^{\star}}(s_{0}) - V_{k}^{\pi^{\star}}(s_{0}) \\ &= \mathbb{E}\left[\sum_{\tau=0}^{\infty} \gamma^{\tau} \left\langle \tilde{\pi}_{k}(\cdot \mid s_{k,\tau}) - \pi^{\star}(\cdot \mid s_{k,\tau}), \widehat{Q}_{k}^{\tilde{\pi}_{k}}(s_{k,\tau}, \cdot) \right\rangle \middle| \pi^{\star}, \widehat{P}_{k}, s_{0} \right] + \widehat{V}_{k}^{\pi^{\star}}(s_{0}) - V_{k}^{\pi^{\star}}(s_{0}), \end{aligned}$$

- The first term is contributed by competing against π^* in the *learned* model $\hat{P}_k \Longrightarrow$ conducting policy optimization in *learned* models.
- This decomposition will be amenable as long as we can achieve a *near optimism* at the initial state s_0 , *i.e.*, $\hat{V}_k^{\pi^*}(s_0) - V_k^{\pi^*}(s_0) \lesssim 0$

The Chinese University of Hong Kong, Shenzhen

on coefficients $\{\lambda_k\}_{k=1}^K$, bonus coeffilearning rate η .

any $s \in \mathcal{S}$.

$$\tilde{\pi}_k(\cdot \mid s'_k), s''_k \sim P^*(\cdot \mid s'_k, a'_k).$$

 $(\mathcal{A}), s''_k \sim P^*(\cdot \mid s'_k, a'_k).$

 $\mathcal{D}'_{k-1} \cup \{(s'_k, a'_k, s''_k)\}.$ $(\forall \widehat{\phi}_k(s,a), \forall (s,a,s') \in \mathcal{S} imes \mathcal{A} imes \mathcal{S}_k)$

$$egin{aligned} & s,a)\in \mathcal{D}_k \ \widehat{\phi}_k(s,a)\widehat{\phi}_k(s,a)^ op+\lambda_k I. \ & a)\|_{\widehat{\Sigma}_k^{-1}},2)/(1-\gamma), orall(s,a)\in\mathcal{S} imes\mathcal{A}. \end{aligned}$$

unction $\widehat{b}_k = \widehat{b}_{k_i}$.

 $b_k, \tilde{\pi}_k).$

- L episodes and the model is only updated at the first episode in one epoch.

Analysis

Regret Upper Bound

Theorem 1. For any adversarial low-rank MDP, with appropriate setting of parameters, the regret of POLO is upper bounded by $\mathcal{R}_K = O(K^{5/6}A^{1/2}d\ln(1+AMK^2)/(1-\gamma)^2)$. **Remark.** Ignoring the dependence on all logarithmic factors but M, the regret upper bound can be simplified as $\widetilde{O}(K^{5/6}A^{1/2}d\ln(1+M)/(1-\gamma)^2)$. The regret upper bound matches the regret lower bound $\Omega(\frac{\gamma^2}{1-\gamma}\sqrt{dAK})$ in A up to a logarithmic factor but looses in factors of K and d.

Regret Lower Bound

Theorem 2. Suppose $d \ge 8$, $S \ge d+1$, $A \ge d-3$, and $K \ge 2(d-4)A$. Then for any algorithm Alg, there exists an episodic infinite-horizon low-rank MDP \mathcal{M}_{Alg} with fixed loss function such that the regret for this MDP is lower bounded by $\Omega(\frac{\gamma^2}{1-\gamma}\sqrt{dAK})$. **Remark.** • *The first regret lower bound for learning low-rank MDPs with fixed loss functions.*

than linear MDPs in the regret minimization setting.

References

- for learning adversarial linear mixture mdps. In AISTATS 2022.
- tion with bandit feedback. In ICML 2020.
- offline RL in low-rank mdps. In ICLR 2022.

• Caveat: the local update nature of PO at each state + state occupancy distribution $d_{\widehat{D}}^{\pi^*}$ varies across different episodes \implies the first term above is no longer bounded by OMD analysis! • To address this issue, POLO adopts an epoch-based transition update, in which one epoch has

• With $D_F(x, y)$ as the KL divergence, at the end of episode k, the policy is updated by solving $\tilde{\pi}_{k+1}(\cdot \mid s) \in \operatorname{argmin}_{\pi(\cdot \mid s) \in \Delta(\mathcal{A})} \eta \left\langle \pi(\cdot \mid s), \widehat{Q}_{k}^{\tilde{\pi}_{k}}(s, \cdot) \right\rangle + D_{F}(\pi(\cdot \mid s), \tilde{\pi}_{k}(\cdot \mid s)).$

• The dependence on A in Theorem 2 shows a clear separation between low-rank MDPs and linear MDPs, which demonstrates that low-rank MDPs are statistically more difficult to learn

Figure 1: The class of the hard-to-learn low-rank MDP instances used in the proof of Theorem 2.

[1] Jiafan He, Dongruo Zhou, and Quanquan Gu. Near-optimal policy optimization algorithms

[2] Lior Shani, Yonathan Efroni, Aviv Rosenberg, and Shie Mannor. Optimistic policy optimiza-

[3] Masatoshi Uehara, Xuezhou Zhang, and Wen Sun. Representation learning for online and